

Short Module Manual **Data Science (B. Sc.)**

XU Exponential University of Applied Science

SHORT FACTS

Graduation	Bachelor of Science (B.Sc.)	Type of study	Full-time
Scope	180 ETCS	Total number of semesters	6 semesters
Language	English	Matriculation date	Every winter semester
Teaching method	Seminars in small groups, additional excursions, case studies, integration into practice		

Fields of Focus

Mathematical and statistical content in the context of Data Science

Skills, methods and instruments ofdata visualization

Basics in the area of coding

Utilization and application of the data in a business context

Fields of application in different branches/industries (e.g. med tech, security, financial technology, etc.)

Qualification Profile Demarcation and defintion of priorities

Image 2: Data Science workflow (Quelle: IBM: Big Data & Analytics Hub. Source: www.ibmbigdatahub.com/blog/why-we-need-methodology-data-science)

Course and content of studies

SEMESTER 1	DS 1	Intro to Data Science	5 ECTS written exam
		 Introduction to Data Science: history, basic terms, tasks, questions, conce of data science, basics of programming and algorithms Data Science Tools: Application of the basics in common software produc Rapid Miner and Paterva Maltego, introduction IBM Watson 	pts and methods cts: Excel, Tableau,
	DS 2	Data Structures and Programming	5 ECTS term paper
		 Data Structures: Basic visualization algorithms, efficient algorithms, algori debugging and error identification Programming Foundations in R: Setting up and handling programming en use of R (e.g. functions, libraries, graphs, diagrams, expressions) 	thm development, vironments in R,
	DS 3	Data Acquisition and Visualization	5 ECTS written exam
		 Acquiring and Cleaning Data: data collection and data cleansing (R) Data and Information Visualization: Fundamentals of visual representation information, visual analytics, visualization forms and diagrams 	n of quantitative
	QM 5	Quantitative Methods I	5 ECTS written exam
		 Discrete Mathematics: Fundamentals, relations and functions, sequences combinatorics, recursion and growth of algorithms Linear Algebra: Vector spaces, linear images and matrices, linear equatio optimization, Scalar product 	and series, ns, linea

•

	IM 1		Digital Transformation	5 ECTS term paper
TER 1		•	Disruptive Innovations: Basic concepts, challenges and requirements of tra- digital future markets, Internet of Things, generations of digitization Digital Solutions: new business models, new applications in hardware and approaches to communication and collaboration	ansformation, software, new
SEMES	SK 1		Academic Skills	5 ECTS term paper
		•	Scientific Work: basics of scientific work, problem definition, structure, cital literature Text and Data Processing: formatting in Word, data processing in Excel, st SPSS and PSPP	tion, data, atistical work with
	DS 4		Data Modeling and Databases	5 ECTS code and documentation
		•	Basic Data Modeling: Basic concepts of data modeling, Entity-Relationsh relations, Big Table and Document Databases, referential integrity, data r context of Big Data Databases and Management Systems: database theory, database devel administration	ip-Model, nodeling in the lopment and
	DS 5		Algorithms and Programming	5 ECTS code and documentation
		•	Data Algorithms: algorithm theory, properties, analysis, representation of a algorithms, algorithmic graph theory Programming Foundations in Python: Programming Foundations of Pythor Plots with Python, Time Series	different n, Visualization and
R 2	DS 6		Data and Cyber Security	5 ECTS written exam
SEMESTE		•	Data Security: Fundamentals of data protection and data security, digita ethics Cyber Security: Basic concepts and frameworks, threats, internet security, management, cryptography, pentesting and hacking, blockchain and Bita	l identity, data processes, risk coin
	QM 6		Quantitative Methods II	5 ECTS written exam
		•	Graph Theory: Introduction, trees, search methods, design methods, color Analysis: Basics, differential calculus I and II, integral calculus, Fournier seri	rs, rivers, paths es
	IM 2		Cooperation and Communication	5 ECTS presentation
		•	Collaboration Tools: Arbeits- und Organisationsgestaltung in der Industrie Voraussetzungen der Zusammenarbeit, Tools und Plattformen Communication Tools – Effective Corporate Networks: Kommunikationsme	e 4.0, Konzepte und edien des Internets
	SK 2		Communication Skills	5 ECTS presentation
		•	Communication and Presentation: Basics, functions and types of commu presentation basics Moderation Workshop: Basics, preparation and follow-up of the moderatic	nication, on, implementation

4

•

SEMESTER 3

SEMESTER 4

DS 7	Machine Learning and Al	5 ECTS written exam
	 Introduction to Machine Learning: Calculation of probability, similarity tional logic to Machine Learning: Probability calculation, similarity calculation, frame aspects of ML, neural networks, introduction to fuzzy syste Machine Learning Case Studies: Application in Case Studies (e.g. chat image recognition etc.) 	calculation, proposi- sulation, propositional ms bots, biometrics,
LS 8	Data Analysis	5 ECTS presentation
	 Data Analysis: data analysis, information quality, data analysis process Data Analysis Project: data analysis project: project management, data - modelling - presentation 	ses ta collection,
DS 9	Smart Data and Big Data	5 ECTS written exam
	 Big Data Concepts: concepts, methods and approaches of Big Data, risks, procedures and methods in the context of Big Data Big Data Analysis: possible uses in the business context, Big Data Que Large-Scale Graphs 	opportunities and ry Engines,
QM 7	Quantitative Methods III	5 ECTS written exam
	 Probability Theory: probabilities, random variables, probability distribu Statistics: key figures of a sample, estimation methods, inspection met 	tions hods
IM 3	Innovation	5 ECTS oral exam
	 Innovation management: types, significance and evaluation of innova innovation management in companies Innovation Techniques: Design Thinking, Lean Startup, Mind-Mapping, 	tions, anchoring of Sprint etc.
SK 3	Project Management Skills	5 ECTS presentation
	 Project Planning and Controlling: Basics of project management, class forms of project management Field Project: Application of the project management basics to practic 	sical and modern cal projects
	Study Abroad Semester	20 ETCS
	In accordance with the auidelines of the partner universities, there is the	ne possibility of

In accordance with the guidelines of the partner universities, there is the possibility of acquiring and deepening intercultural experience, setting professional priorities, and developing language and personal skills.

Internship

Internship in a professionally appropriate field

10 ECTS internship report

SEMESTER 5	DS 10	Data Mining	5 ECTS written exam
		Data Mining Process: basics of data mining, relations, correlations and sin errors, missing values, fields of application Data Mining Methods and Techniques: CRISP-DM model, Dara Mining pro classification, association analysis, cluster procedures	nilarities, types of ocedures,
	DS 11	Data Warehouse	5 ECTS written exam
		Data Warehouse Architecture: Terminology, definition and components of warehouse, design of multidimensional data modelling, design of multidin tion systems, OLAP, data mining in the context of data warehouses, areas Distributive Data Collection: benefit assessment of data warehouse proje implementation procedures, data warehouse engineering	f the data nensional informa- s of application acts,
SEMESTER 6	DS 12	Text Mining and Information Retrieval	5 ECTS written exam
		Introduction to Text Mining: Basics of text mining, process, databases, cla recognition Application Areas: Web Mining, topic tracking, information visualizing etc.	ssification, pattern
	DS 13	Data Ethics and Law	5 ECTS presentation
	•	Data Ethics: ethics concept in the context of data science, principles of e value-oriented application of Big Data, social consequences, risks of abu Data Law: identity management, data protection, limits and future scence	thical behavior, Ise Irios
	BT 2	Bachelor Thesis	10 ECTS thesis
		Independent properties of the Dephaler Thesis	

Independent preparation of the Bachelor Thesis

ELECTIVE MODULES in the 5th and 6th semester

Two must be elected - The realization of the election modules depends on a minimum number of participants.

	EL 55/56	Programming and Optimization I & II	5 ECTS respective term paper
		In-Depth Programming: optimization procedures, minimization of f method of least squares Optimization Methods: Construction and improvement methods, K Constraint Programming, Local Search, Linear Programming Advanced Programming: Heuristic Branch-and Bound methods, m programming, more complex approaches Programming and Optimization Project: Group project for the program of a self-chosen optimization problem	unctions of a variable, ínapsack-Problem, ixed-integer grammatic implementation
	EL 57/58	Domain Specific Case Studies & Tools I & II	5 ECTS respective term paper
l		Human Sciences: Basics in sports and Talent Analytics, Learning An Science Web Infrastructure: OSINT and Social Data Science, Security Servic print-Analytics Business Economics: Social Data Science, Industry 4.0, Insurance F Health Data Science: FACS, Health Analytics, BCI and Human Brai	nalytics, Political Data ces, Network- and Foot- raud n
5	EL 59/60	Web Technologies I & II	5 ECTS respective term paper
VEIVIEVIEK J &		Introduction to Web Technologies: network technology, network pro of the WWW, web technologies and website creation Semantic Web Technologies: Basics, knowledge representation ar ontologies, chat bots, future scenarios Scaling Up: Introduction and basic concepts of social media, crow analytics, social media measurement User Experience Creation Project: group project of a web project	rotocols, basic structures nd learning, RDF, rdsourcing, social media
	EL 61/62	Security I & II	5 ECTS respective term paper
		Information Security: Terms and principles of information security, k Cryptography: types of cryptography, data encryption, symmetric encryption, use of cryptography Security Management: IT risk management from different perspect Security Case Studies Project: digital forensics, pentesting and fore application areas	basics, areas, and asymmetric tives ensics in different
	EL 63/64	Computational Intelligence I&II	5 ECTS respective term paper
		Computational Learning: biological basics, methods, learning rules types of neural networks Deep Learning Algorithms: Basics and technologies of deep learni Python, applications of neural networks Al Deep Learning: optimization algorithms, productivity and deep Al Applications: Use cases	s, network types, different ng, neural networks in learning, Lambda

7

EL

65/66

Team Management I&II

5 ECTS respective term paper

- Working in a Multidisciplinary Team: Work and success factors of multidisciplinary teams Employee Management: Personnel management and leadership, basics of corporate •
- management Building a Data Science Team: roles, processes and project management in the Data Science Team

August-Bebel-Straße T +49 30 959 999 991 26-53 14482 Potsdam (de)

study(at)xu-university.com www.xu-university.com

